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Abstract

PEBBL is a C++ framework for implementing general parallel branch-and-bound
optimization algorithms, providing a mechanism for the efficient implementation of a
wide range of branch-and-bound methods on an large variety of parallel computing
platforms. This document describes:

• The history, goals, and general properties of PEBBL

• How to download and compile PEBBL

• PEBBL’s special search capabilities, including enumeration, early output, and
checkpointing

• PEBBL’s basic architecture, including its serial and parallel layers

• The design of the serial layer and the notion of manipulating subproblem states

• The design and capabilities of the parallel layer

• How to build a simple serial branch-and-bound algorithm using PEBBL

• How to extend a serial implementation into a parallel one

• Many of the numerous parameters that can be used to tune PEBBL’s behavior.
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1 Introduction

1.1 What is PEBBL?

PEBBL (Parallel Enumeration and Branch-and-Bound Library) is a C++ class library for
constructing serial and parallel branch-and-bound optimization algorithms. It is a frame-
work, shell, or skeleton that handles the generic aspects of branch and bound, allowing the
developer to focus primarily on the unique aspects of their algorithm. It is thus similar to
other software projects such as PUBB [16, 15], BoB [10], PPBB-Lib [18], and ALPS [13]
(PEBBL’s development has significantly influenced the architecture of ALPS). PEBBL has
a number of unique features, including very flexible parallelization strategies and the ability
to enumerate near-optimal solutions.

In principle, one can build an arbitrary branch-and-bound method atop PEBBL by defin-
ing a relatively small number of abstract methods. By defining a few more methods, the
algorithm can be immediately parallelized. PEBBL contains numerous tuning parameters
that can adapt the resulting parallel implementation to any parallel architecture that sup-
ports an MPI message passing library [17].

1.2 The Genealogy of PEBBL

Most of the development work on PEBBL has been carried out by

• Jonathan Eckstein, Rutgers University

• William Hart, Sandia National Laboratories

• Cynthia A. Phillips, Sandia National Laboratories.

PEBBL is a relatively new name for what was conceived as the “core” layer of the PICO
(Parallel Integer and C ombinatorial Optimization) package. PICO was designed to solve
mixed integer programming problems, but included a “core” layer supporting implementation
of arbitrary branch and bound algorithms. In the Spring of 2006, the development team
decided to distribute this core layer as a software package in its own right, changing its
name from “the PICO core” to PEBBL. Much of PEBBL’s basic design is thus described in
preliminary publications concerning PICO [4, 6, 5]. In fact, significant portions of this user
guide are derived from Eckstein et al. [5, 6].

PEBBL’s parallelization strategies are patterned after CMMIP [2, 3], a parallel mixed
integer programming solver developed for the Thinking Machines CM-5 parallel supercom-
puter. CMMIP, however, was specifically designed for mixed integer programming, and to
take advantage of particular features of the CM-5 architecture. PEBBL is more generic in
two senses: it is a shell that one can use to implement any branch-and-bound algorithm, and
it is designed to run in a generic message-passing environment. The ABACUS package [8]
also influenced some of PEBBL’s design.
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2 Downloading and Compiling PEBBL

The PEBBL software project is supported by the Acro optimization project. Acro supports
the integration of PEBBL builds with auxillary libraries, like UTILIB.

2.1 Downloading PEBBL

The Acro software library can be installed from a distribution file (tape, etc.) or using a
checkout from the Concurrent Version System (CVS) repository. If you are accessing current
files from the CVS repository, you need to use the cvs.a and ssh.cvs scripts, which can be
downloaded from http://software.sandia.gov/Acro. The Acro library can be checked out of
the cvs repository by executing:

cvs.a checkout acro-pebbl

The use of cvs.a requires an account on the machine software.sandia.gov, which is generally
only available to Sandians and academic collaborators of Sandians.

The latest version of PEBBL can also be acquired in compressed tarball form from

http://software/sandia.gov/Acro

Once downloaded, compressed tarballs for the version of the day (VOTD), for example, can
be downloaded and extracted with the following:

gzip -d pebbl-VOTD.tar.gz | tar xf -

2.2 Configuring and Building

PEBBL can be configured using the standard build syntax:

cd acro

./configure

make

This builds the library libpebbl.a in acro/lib, along with supporting libraries. The library
headers are installed in acro/include. PEBBL developers using CVS need to build with the
autoconf tools. This can be done with the following syntax:

cd acro

autoreconf

./configure

make

The acro/setup command can also be used to simplify this process:

cd acro

./setup configure make
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The setup command generates the following files in the acro/test directory:

config.out The output of ‘autoreconf’ and ‘configure’

config.xml Summary of config.out to detect errors

build.out The output of ‘make’

build.xml Summary of build.out to detect errors

The Acro build can be modified through the use of environment variables and with
command line options to the configure script. If you set no environment variables and use
no command line options, the configure script will choose sensible values.

configure --help

This will list all the configuration options, and in some instances the default action. Typical
use might be to define where MPI is located, and in which directory to install the Acro
libraries and header files:

configure --with-mpi-compilers=/usr/local/mpich-1.2.4/ch_p4/bin

--prefix=/Net/usr/local

A detailed discussion of these configuration options is given in the file

acro/INSTALL

and on the Acro web pages (see http://software/sandia.gov/Acro).

3 Architecture and Features

PEBBL consists of two layers, the serial layer and the parallel layer. The serial layer
provides an object-oriented means of describing branch-and-bound algorithms, with very
little reference to parallel implementation. If you do not need parallelism, or are simply in
the early stages of algorithm development, the serial layer allows branch-and-bound methods
to be described, debugged, and run in a familiar, serial programming environment.

The parallel layer contains the core code necessary to create parallel versions of serial
applications. To parallelize a branch-and-bound application developed with the serial layer,
you simply define new classes derived from both the serial application and the parallel layer. A
fully-operational parallel application only requires the definition of a few additional methods
for these derived classes, principally to tell PEBBL how to pack application-specific problem
and subproblem data into MPI message buffers, and later unpack them.

Any parallel PEBBL application constructed in this way inherits the full capabilities of
the parallel layer, including a wide range of different parallel work distribution and load
balancing strategies, and user-configurable levels of interprocessor communication. You can
then add application-specific refinements to the parallelization, but are not required to.
Figure 1 shows the conceptual relationship between the two layers, a serial application,
and its parallelization. In the figure, the application is one of the examples distributed
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Serial Application
(binaryKnapsack)

PEBBL Serial Layer

PEBBL Parallel Layer

(parallelBinaryKnapsack)
Parallel Application

Figure 1: The conceptual relationships of PEBBL’s serial layer, the parallel layer, a serial
application (in this case, binaryKnapsack), and the corresponding parallel application (in
this case, parallelBinaryKnapsack).

with PEBBL, for solving binary knapsack problems; the same basic pattern applies to all
PEBBL applications. The serial layer class implementing the branch and bound algorithm
is called binaryKnapsack, and the parallel application is called parallelBinaryKnapsack.
The “diamond” inheritance structure shown in Figure 1 is integral to PEBBL’s design — it
is a powerful but sometimes problematic use of C++ multiple inheritance.

3.1 Special Search Features

3.1.1 Tolerances and enumeration capabilities

In its normal mode of operation, PEBBL’s optimality criteria are controlled by two pa-
rameters, absTolerance and relTolerance, with respective default values 0 and 10−7.
PEBBL attempts to locate a single problem solution that is either within an additive dis-
tance absTolerance or a relative distance relTolerance of optimality, whichever turns out
to be less restrictive. For example, setting relTolerance to 0.05 would specify a solution
with 5% of optimality.

3.2 Early output and checkpointing

Some of the calculations for which PEBBL is intended may be extremely long-running, and
thus vulnerable to data loss if the system crashes or a job’s time allocation is exhausted.
PEBBL has two features designed to mitigate such data loss. The first, early output, tries
to ensure that if a PEBBL run is interrupted, you can recover the best solution found so
far. You enable this feature by setting the parameter earlyOutputMinutes to some positive
value m. Each time PEBBL acquires a new incumbent solution (that is, a solution better
than all previously found ones) that exists for at least m minutes, it immediately writes it
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to disk so that it is available if the process crashes. Early output is also useful if you wish to
voluntarily terminate a run and still have access to the best feasible solution. This is useful
in early testing of an application where you may not yet know good tolerance values. For
example, if you initiate a run with a relTolerance of 5%, but after considerable computation,
the gap is still 10%, you may decide you are satisfied with the 10% tolerance.

The second data loss mitigation feature is checkpointing, which imposes more work on
PEBBL, but is more powerful. Checkpointing is currently available only for the parallel
layer; it is not available in applications built solely on the serial layer. The key parameter
controlling checkpointing is checkPointMinutes. If this parameter has a positive value m,
PEBBL writes its complete internal state to disk approximately every m minutes. Each
processor writes a separate file, and the checkpointing feature requires that each processor
have access to disk I/O, but not necessarily in a shared directory.

The computation can be restarted from the time of the checkpoint by specifying either
of the command-line parameters restart or reconfigure. Using restart is faster, but
reconfigure allows one to restart with a different parallel configuration — for example, a
different total number of processors. To use reconfigure, all checkpoint files must be in (or
moved to) the same directory.

Some MPI implementations provide their own checkpointing capabilities. PEBBL’s
checkpointing feature is independent of any such capabilities and does not require them.

3.3 Serial layer architecture

3.3.1 The branching and branchSub classes

To define a serial branch-and-bound algorithm, you must extend the two key classes in
the PEBBL serial layer, branching and branchSub. The branching class stores global
information about a problem instance, and contains methods that implement various kinds of
serial branch-and-bound algorithms, as described below. Each branchSub object stores data
about a subproblem in the branch-and-bound tree, and the branchSub class contains methods
that perform generic operations on subproblems. This basic organization is borrowed from
ABACUS [8], but is more general, since there is no assumption that cutting planes or linear
programming are involved.

For example, our binary knapsack solver defines a class binaryKnapsack, derived from
branching, to describe the capacity of the knapsack and the possible items to be placed
in it. We also define a class binKnapSub, derived from branchSub, which describes the
status of the knapsack items at nodes of the branching tree (i.e., included, excluded, or
undecided); this class describes a node of the branch-and-bound tree. Each object in a
subproblem class like binKnapSub contains a pointer back to the corresponding instance
of the “global” problem class, in this case binaryKnapsack. Through this pointer, each
subproblem object can find global information about the overall branch-and-bound process.
Finally, both branching and branchSub are derived from a common base class, pebblBase,
which mainly contains common symbol definitions. The branching class also derives from
pebblParams, which holds command-line-specifiable parameter objects implemented using
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branching

Base Class
pebblBase

Global Pointer

branchSub
Global Pointer

binaryKnapsack

Application Global Class

binKnapSub

Application Subproblem Class

Parameter Base Class
pebblParams

Figure 2: Basic class hierarcy for a serial PEBBL application (in this case, binaryKnapsack,
with corresponding subproblem class binKnapSub).

the UTILIB class parameter package. Figure 2 illustrates the basic class hierarchy for a
serial PEBBL application.

The class header file for the serial binary knapsack example is in pebbl/src/example/

serialKnapsack.h. Note that binaryKnapsack is defined via

class binaryKnapsack : virtual public branching { · · · } ,

and binKnapSub is defined via

class binKnapSub : virtual public branchSub · · · { · · · } .

Calculations made for subproblems frequently require data stored in the problem description
class, which are accessible via pointers as depicted by the two horizontal dotted arrows
in Figure 2. To implement the upper arrow, the definition of the subproblem class must
instantiate the abstract method bGlobal(); in binKnapSub, for example, this capability is
implemented via:

protected:

binaryKnapsack* globalPtr;

public:

inline binaryKnapsack* global() const { return globalPtr; };
branching* bGlobal() const { return global(); };

This pattern should be fairly typical: each object of the branchSub-derived class should
contain a pointer to the branching-derived object for which it represents a subproblem. The
bGlobal() method should then be implemented by casting this pointer to a branching*.
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Figure 3: PEBBL’s subproblem state transition diagram. It is possible that a single ap-
plication of boundComputation may take a subproblem from the boundable state, through
beingBounded, to bounded. Similarly, a single use of splitComputation may move a sub-
problem from bounded, through beingSeparated, to separated.

3.3.2 Manipulating subproblem states

A key feature of PEBBL, first published in Eckstein et al. [6], is that subproblems remember
their state. Each subproblem progresses through as many as six of these states, boundable,
beingBounded, bounded, beingSeparated, separated, and dead, as illustrated in Figure 3.

A subproblem always comes into existence in state boundable, meaning that little or no
bounding work has been done for it, although it still has an associated bound value; typically,
this bound value is simply inherited from the parent subproblem. Once PEBBL starts work
on bounding a subproblem, its state becomes beingBounded, and when the bounding work
is complete, the state becomes bounded.

Once a problem is in the bounded state, PEBBL may elect to split it into smaller sub-
problems. At this point, the subproblem’s state becomes beingSeparated. Once separation
is complete, the state becomes separated, at which point the subproblem’s children may
be created. Once the last child has been created, the subproblem’s state becomes dead, and
it may be deleted from memory. Subproblems may also become dead at earlier points in
their existence, because they have been fathomed or represent portions of the search space
containing no feasible solutions.

Class branchSub has three key abstract virtual methods, namely boundComputation,
splitComputation, and makeChild, that are responsible for applying these state transi-
tions to subproblems. PEBBL’s search framework interacts with applications primarily
through these methods; defining a PEBBL branch-and-bound application essentially con-
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sists of providing definitions for these three operators for the application subproblem class
(e.g. binKnapSub).

The boundComputation method’s job is to move the subproblem to the bounded state, up-
dating the data member bound to reflect the computed bound value. The boundComputation
method is allowed to pause an indefinite number of times, leaving the subproblem in the
beingBounded state. The only requirement is that any subproblem will eventually become
bounded after some finite number of applications of boundComputation. This flexibility
allows PEBBL to support branch-and-bound variants where bounding is suspended on a
subproblem, it is set aside, and another task or subproblem is consider. The subproblem’s
bound, reflected in the data member bound, may change at each step of this process. When
boundComputation decides that there is no more bounding work to be done for subprob-
lem, it should change the subproblem state to bounded by executing setState(bounded).
Changes in subproblem state should be implemented via the setState rather than by di-
rect assignment to the data member state to ensure PEBBL can keep accurate subproblem
statistics.

The splitComputation method’s job is similar to boundComputation’s, but it manages
the process of splitting subproblems. Eventually it must execute setState(separated) to
signal that the subproblem is completely separated, and then return the number of child
subproblems (splitComputation has a return type of int). Before that, however, it is
allowed to return an indefinite number of times with the problem left in the beingSeparated
state. This feature allows PEBBL to implement branch-and-bound methods where the work
in separating a subproblem is substantial and might need to be paused to attend to some
other subproblem or task. The subproblem’s bound may be updated by splitComputation

if the separation process yields additional bounding information.
Finally, makeChild returns a branchSub* pointing to a single child of the subproblem

it is applied to. This parent must be in the separated state. After its last child has been
made, PEBBL automatically puts the subproblem in the dead state.

If at any point in boundComputation, splitComputation, or makeChild, it becomes
evident that a subproblem does not require further investigation — for example, because it
has become evident the subproblem is infeasible — one may mark the subproblem as dead

by executing setState(dead).
In addition to boundComputation, splitComputation, and makeChild, some additional

virtual methods must to be defined to complete the specification of a branch-and-bound
application; all these methods are described in Section 4.1.

3.3.3 Pools, handlers, and the search framework

PEBBL’s serial layer orchestrates branch-and-bound search through a module called the
“search framework”, literally, branching::searchFramework. The search framework acts as
an attachment point for two user-specifiable objects, a pool and a handler, whose combination
determines the exact “flavor” of branch and bound implemented.

The pool object dictates how the currently active subproblems are stored and accessed,
which effectively determines the branch-and-bound search order. Currently, there are three
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kinds of pool: a heap sorted by subproblem bound1, a stack, and a FIFO queue. If you
specify the heap pool, then PEBBL will follow a best-first search order; specifying the stack
pool results in a depth-first order, and specifying the queue results in a breadth-first order.

Critically, at any instant in time, the subproblems in the pool may in principle represent
any mix of states: for example, some might be boundable, and others separated. This
feature gives you flexibility in specifying the bounding protocol, which is a separate issue
from the search order; the “handler” object implements a particular bounding protocol.

To illustrate what a bounding protocol is, consider the usual branch-and-bound method
for mixed integer programming as typically described by operations researchers: one removes
a subproblem from the currently active pool, and computes its linear programming relaxation
bound. If the bound is strong enough to fathom the subproblem, it is discarded. Otherwise,
one selects a branching variable, creates two child subproblems, and inserts them into the
pool. This type of procedure is an example of what is often called “lazy” bounding (see for
instance [1]), because it views the bounding procedure as something time-consuming (like
solving a large linear program) that should be delayed if possible. In the PEBBL framework,
lazy bounding is implemented by a handler that tries to keep all subproblems in the active
pool in the boundable state.

An alternative approach, common in work originating from the computer science commu-
nity, is usually called “eager” bounding (again, see [1] for an example of this terminology).
Here, all subproblems in the pool have already been bounded. One picks a subproblem out of
the pool, immediately separates it, and then forms and bounds each of its children. Children
whose bounds do not cause them to be fathomed are returned to the pool.

Lazy and eager bounding each have their own advantages and disadvantages, and the best
choice may depend on both the application and the implementation environment. Typically,
implementors seek to postpone the most time-consuming operations in the hope that the
discovery of a better incumbent solution will make them unnecessary. So, if the bounding
operation is much more time-consuming than separation, lazy bounding is most appealing.
If the bounding operation is very quick, but separation more difficult, then eager bounding
would be more appropriate. Eager bounding may save some memory since leaf nodes of the
search tree may be processed without entering the pool, but has a larger task granularity,
resulting in somewhat less potential for parallelism.

Because PEBBL’s serial layer stores subproblem states and lets the you specify a han-
dler object, it gives you the freedom to specify lazy bounding, eager bounding, or other
protocols. The search framework routine simply extracts subproblems from the pool and
passes them to the handler until the pool becomes empty. Currently, there are three pos-
sible handlers, eagerHandler, lazyHandler, and hybridHandler. The eagerHandler and
lazyHandler objects respectively implement eager and lazy bounding by trying to keep as
many subproblems as possible in the bounded and boundable states, respectively.

1Objects of type branchSub have a member called integralityMeasure which may be used by the
application to measure how far a subproblem is from being completely feasible (that is, from having
candidateSolution yield TRUE; see Subsection 4.1. If two subproblems have identical bounds, the one
with the lower integralityMeasure will be placed higher in the heap, since it presumably is more likely to
lead to an improved incumbent solution.
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Figure 4: The search framework, pool, and handler. Each “SP” indicates a branch-and-
bound subproblem — an object of type derived from branchSub.

The hybridHandler object implements a strategy that is somewhere between eager and
lazy bounding, and is perhaps the most simple and natural given PEBBL’s concept of sub-
problem states. Given any subproblem, hybridHandler performs a single application of
either boundComputation, splitComputation, or makeChild, to try to advance the sub-
problem one transition through the state diagram. If the subproblem’s state is boundable

or beingBounded, it applies boundComputation once. If the subproblem’s state is bounded
or beingSeparated, it applies splitComputation once. Finally, if the state is separated,
the handler performs one call to makeChild, and inserts the resulting subproblem into the
pool.

The combination of multiple handlers, multiple pool implementations, and the freedom
in implementing boundComputation and splitComputation create considerable flexibility
in the kinds of branch-and-bound methods that the serial layer can implement. Figure 4
depicts the relationship of the search framework, pool, and handler.

You may choose between the existing pools and handlers by setting parameters in the
branching class object; see Section 5.10. You may also in principle supply your own pools
and handlers, but we consider that an advanced topic, and it is not presently covered in this
guide.
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3.4 Parallel layer architecture

PEBBL’s parallel layer attempts to accelerate the branch-and-bound process by using mul-
tiple processors, and requires some form of the MPI message passing interface. PEBBL’s
parallel layer will run on shared-memory (SMP) systems, but only by using MPI to emulate
a message passing system.

PEBBL’s primary mode of parallelism, as is standard in parallel branch and bound, is to
explore different nodes of the search tree simultaneously on different processors. However,
PEBBL has the optional capability to use different modes of parallelism during the early
stages of the search; see Section 3.6 below.

For the most part, parallel-layer search node processing is carried out by the same
boundComputation, splitComputation, and makeChild methods as in serial layer. Thus,
once you have created these methods for your application, parallel execution should be avail-
able with little additional development effort.

3.4.1 Inheritance pattern

The parallel layer’s capabilities are embodied in the classes parallelBranching and paral-

lelBranchSub, which have the same function as branching and branchSub, respectively,
except that they perform parallel search of the branch-and-bound tree. Both are derived
from a common base class parallelPebblBase, whose function is similar to pebblBase, con-
taining mainly common symbol definitions. The class parallelBranching also derives from
parallelPebblParams, which contains a large number of parameters for controlling parallel
search. Furthermore, each of parallelBranching and parallelBranchSub is derived from
the corresponding class in the serial layer.

To turn a serial application into a parallel application, one must define two new classes.
The first is derived from parallelBranching and the serial application global class. In the
knapsack example, for instance, we defined a new class parallelBinaryKnapsack which has
both parallelBranching and binaryKnapsack as virtual base classes. We call this class
the global parallel class. For each problem instance, the information in the global parallel
class is replicated once on every processor.

This basic inheritance pattern is repeated for parallel subproblem objects. In the knap-
sack case, we defined a parallel subproblem class parBinKnapSub to have virtual public

base classes binKnapSub and parallelBranchSub. As with the serial subproblems, each
instance of parBinKnapSub has a parallelBinaryKnapsack pointer that allows it to lo-
cate global problem information. Figure 5 depicts the inheritance structure for the parallel
knapsack application.

The header file pebbl/src/example/parKnapsack.h defines this inheritance structure.
It defines parallelBinaryKnapsack via
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branching

Global Pointer

branchSub
Global Pointer

binaryKnapsack

Application Global Class

binKnapSub

Application Subproblem Class

Parallel Subproblem Class

parBinKnapSub

parallelBranchSubparallelBranching

Global PointerparallelBinaryKnapsack

Parallel Global Class

Global Pointer

Figure 5: Inheritance structure of the parallel knapsack application. Other parallel applica-
tions are similar.

class parallelBinaryKnapsack :

public parallelBranching,

public binaryKnapsack

{
...

} ,

and parBinKnapSub via

class parBinKnapSub :

public parallelBranchSub,

public binKnapSub

{
private:

parallelBinaryKnapsack* globalPtr;

public:

parallelBinaryKnapsack* global() const { return globalPtr; };
parallelBranching* pGlobal() const { return globalPtr; };

...

}

Once this basic inheritance pattern is established, the parallel application automatically
combines the description of the application coming from the serial application (in the knap-
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sack case, embodied in binaryKnapsack and binKnapSub) with the parallel search capabil-
ities of the the parallel layer. For the parallel application to function, however, additional
methods must be defined, as summarized in Section 4.2. The most critical of these meth-
ods are pack and unpack, which must be defined both for the global parallel class and for
subproblems. These methods respectively describe how to encode and decode objects into a
UTILIB Packbuffer or UnpackBuffer object [7]. For the global parallel class, PEBBL uses
pack and unpack when it broadcasts the problem description to all processors at the outset
of the parallel search. For subproblems, PEBBL uses pack and unpack in the transmission
of subproblems between processors.

3.4.2 Processor clustering

PEBBL’s parallel layer employs a generalized form of the processor organization used by the
later versions of CMMIP [2, 3]. Processors are organized into clusters, each with one hub
processor and one or more worker processors. The hub processor serves as a “master” in
work-allocation decisions, whereas the workers are in some sense “slaves,” doing the actual
work of bounding and separating subproblems. The degree of control that the hub has over
the workers may be varied by a number of run-time parameters, and may not be as tight as
a classic “master-slave” system. Further, the hub processor has the option of simultaneously
functioning as a worker.

Three run-time parameters, all defined in parallelPebblBase, govern the partitioning of
processors into clusters: clusterSize, numClusters, and hubsDontWorkSize. First PEBBL
finds the size k of a “typical” cluster via the formula

k = min

{

clusterSize, max

{⌊

p

numClusters

⌋

, 1

}}

,

where p is the total number of processors. Thus, k is the smaller of the cluster sizes that
would be dictated by clusterSize and numClusters. Processors are then gathered into
clusters of size k, except that if k does not evenly divide p, the last cluster will be of size
p mod k, which will be between 1 and k−1. In clusters whose size is greater than or equal to
hubsDontWorkSize, the hub processor is “pure,” that is, it does not simultaneously function
as a worker. In clusters smaller than hubsDontWorkSize, the hub processor is also a worker.
The rationale for this arrangement is that, in very small clusters, the hub will be lightly
loaded, and its spare CPU cycles should be used to help explore the branch-and-bound tree.
If a cluster is too big, however, using the hub simultaneously as a worker may unacceptably
slow the hub’s response to messages, slowing down the entire cluster. In such cases, a “pure”
hub is more advantageous.

3.4.3 Tokens and work distribution within a cluster

Unlike some “master-slave” implementations of branch and bound, each PEBBL worker
maintains its own pool of active subproblems. This pool may be any of the kinds of pools
described in Subsection 3.3.3, although all workers use the same pool type. Depending on
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various parameter settings, however, the pool might be very small, in the extreme case never
holding more than one subproblem. Each worker processes its pool in the same general
manner as the serial layer: it picks subproblems out of the pool and passes them to a search
handler until the pool is empty. When running in parallel, handlers have the additional
ability to release subproblems from the worker to the hub.

For the remainder of this subsection, assume for simplicity that a single cluster spans all
available processors; in the next subsection, we will amend our description to cover the case
of multiple clusters.

Random release of subproblems: When running in a parallel context, eagerHandler
decides whether to release a subproblem as soon as it has become bounded. In parallel
situations, lazyHandler and hybridHandler make the release decision when they create a
subproblem. The decision is a random one, with the probability of release controlled by run-
time parameters. Released subproblems do not return to the local pool; instead, the worker
cedes control over these subproblems to the hub. Eventually, the hub may send control of
the subproblem back to the worker, or to another worker.

If the release probability is 100%, then every subproblem is released, and control of sub-
problems is always returned to the hub at a certain point in their lifetimes (at creation for
lazyHandler and hybridHandler, and upon reaching the bounded state for eagerHandler).
In this case, the hub and its workers function like a standard “master-slave” system. When
the probability is lower, the hub and its workers are less tightly coupled. The release proba-
bility is controlled by the run-time parameters minScatterProb, targetScatterProb, and
maxScatterProb. The use of three different parameters, instead of a single one, allows the re-
lease probability to be sensitive to a worker’s load. Basically, if the worker appears to have a
fraction 1/w(c) of the total work in the cluster, where c denotes the cluster and w(c) the total
number of workers in the cluster, then the worker uses the value targetScatterProb. If it
appears to have less work, then a smaller value is used, but no smaller than minScatterProb;
if it appears to have more work, it uses a larger value, but no larger than maxScatterProb.

Subproblem tokens: When a subproblem is released, only a small portion of its data,
called a token [14, 2], is actually sent to the hub. The subproblem itself may move to
a secondary pool, called the server pool, that resides on the worker. A token consists of
only the information needed to identify a subproblem, locate it in the server pool, and
schedule it for execution. Since the hub receives only tokens from its workers, as opposed
to entire subproblems, these space savings translate into reduced storage requirements and
communication load at the hub.

When making tokens to represent new, boundable subproblems, the parallel version of
lazyHandler and hybidHandler take an extra shortcut. Instead of creating a new subprob-
lem with parallelMakeChild and then making a token that points to it, they simply create
a token pointing to the parent subproblem, with a special field, whichChild, set to indicate
that the token is not for the subproblem itself, but for its children. Optionally, a single token
can represent multiple children. If every child of a separated subproblem has been released,
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the subproblem is moved from the worker pool to the server pool.

Hub operation and hub-worker interaction: Workers that are not simultaneously
functioning as hubs periodically send messages to their controlling hub processor. These
messages contain blocks of released subproblem tokens, along with data about the workload
in the worker’s subproblem pool, and other miscellaneous status information.

The hub processor maintains a pool of subproblem tokens that it has received from work-
ers. Again, this pool may be any one of the pools described in Subsection 3.3.3. Each time
it learns of a change in workload status from one of its workers, the hub reevaluates the work
distribution in the cluster. The hub tries to make sure that each worker has a sufficient quan-
tity of subproblems, and optionally, that they are of sufficient quality (that is, with bounds
sufficiently far from the incumbent). Quality balancing is controlled by the boolean param-
eter qualityBalance, which is true by default. Workload quantity evaluation is via the
parameter workerSPThreshHub; if a worker appears to have fewer than this many subprob-
lems in its local pool, the hub judges it “deserving” of more subproblems. If quality balancing
is activated, a worker is also judged deserving if the best bound in its pool is worse than the
best bound in the hub’s pool by a factor exceeding the parameter qualityBalanceFactor.
Of the workers that deserve work, the hub designates the one with fewest subproblems as
being most deserving, unless this number exceeds workerSPThreshHub; in that case, the
workers are ranked in reverse order of the best subproblem bound in their pools.

As long as there is a deserving worker and the hub’s token pool is nonempty, the hub picks
a subproblem token from its pool and sends it to the most deserving worker. The message
sending the subproblem may not go directly to that worker, however; instead, it goes to
the worker that originally released the subproblem. When that worker receives the token, it
forwards the necessary subproblem information to the target worker, much as in [2, 3, 14].
This process will be described in more detail below.

When a single activation of the hub logic results in multiple dispatch messages to be
sent from the hub to the same worker, the hub attempts to pack them, subject to an overall
buffer length limit, into a single MPI message, saving system overhead.

If the subproblem release probability is set to 100%, and workerSPThreshHub is set to 1,
the cluster will function like a classic master-slave system. The hub will control essentially
all the active subproblems, and send them to workers whenever those workers become idle.
Less extreme parameter settings will reduce the communication load substantially, however,
at the cost of possibly greater deviation from the search order that would have been fol-
lowed by a serial implementation. Also, setting workerSPThreshHub larger than 1 helps to
reduce worker idleness by giving each worker a “buffer” of subproblems to keep it busy while
messages are in transit or the hub is attending to other workers.

The best setting of the parameters controlling the degree of hub-worker communication
depends on both the application and the hardware, and may require some tuning, but the
scheme has the advantage of being highly flexible without any need for reimplementation or
recompilation.

In addition to sending subproblems, the hub periodically broadcasts overall workload
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information to its workers, so the workers know the approximate relation of their own work-
loads to other workers’. This information allows each worker to adjust its probability of
releasing subproblems appropriately.

Rebalancing: If the probability of workers releasing their subproblems is set too low,
or the search process is nearing completion, workers in a cluster may have workloads that
are seriously out of balance, yet the hub’s token pool may be empty. In this case, the
hub has no work to send to underloaded workers. To prevent such difficulties, there is a
secondary mechanism, called “rebalancing,” by which workers can send subproblem tokens
to the hub. If a worker detects that it has a number of subproblems exceeding a user-
specifiable factor workerMaxLoadFactor times the average load in the cluster, it selects a
block of subproblems in its local pool and releases them to the hub. The hub can then
redistribute these subproblems to other workers.

3.5 Work distribution between clusters

With any system-application combination, there will be a limit to the cluster size that can
operate efficiently, even if its hub does not have any worker responsibilities. To be able to use
all the available processors, it may then be necessary to partition the system into multiple
clusters.

PEBBL’s method for distributing work between clusters resembles CMMIP’s [2, 3], with
some additional generality: there are two mechanisms for transferring work between clusters,
scattering and load balancing. Scattering comes into play when subproblems are released by
workers. If there are multiple clusters, the worker makes a supplementary random deci-
sion as to whether the subproblems should be released to the worker’s own hub or to a
cluster chosen at random. This random decision is controlled by the apparent workload
of the cluster relative to the entire system, and the parameters minNonLocalScatterProb,
targetNonLocalScatterProb, and maxNonLocalScatterProb. When choosing the cluster
to scatter to, the probability of picking any particular cluster is proportional to the number
of workers it contains (the worker’s own cluster is not excluded).

To supplement scattering, PEBBL also uses a form of “rendezvous” load balancing that
resembles CMMIP’s [3]; [11] and [9] also contain earlier, synchronous applications of the same
basic idea. This procedure also has the important side effect of gathering and distributing
global information on the amount of work in the system, which in turn facilitates control of
the scattering process, and is also critical to termination detection in the multi-hub case.

Critical to the operation of the load balancing mechanism is the concept of the workload
at a cluster c at time t, which we define as

L(c, t) =
∑

P∈C(c,t)

|z(c, t) − z(P, c, t)|ρ. (1)

Here, C(c, t) denotes the set of subproblems that c’s hub knows are controlled by the cluster
at time t, z(c, t) represents the incumbent value known to cluster c’s hub at time t, and

19



z(P, c, t) is the best bound on the objective value of subproblem P known to cluster c’s
hub at time t. The exponent ρ ∈ {0, 1, 2, 3} is set by the parameter loadMeasureDegree.
If ρ = 0, only the number of subproblems in the cluster matters. Higher values of ρ give
progressively higher “weight” to subproblems farther from the incumbent. The default value
of ρ is 1.

PEBBL redistributes work between clusters using a “rendezvous” scheme that organizes
all the cluster hub processors into a balanced tree whose radix (branching factor) is deter-
mined by the parameter loadBalTreeRadix, with a default value of 2. Periodically, messages
“sweep” through this entire tree, from the leaves to the root, and then back down to the
leaves. For the details of the rendezvous scheme, see [6, Section 4.4] or [5, Section 4.3]. Peer-
to-peer load balancing mechanisms are frequently classified as either “work stealing,” that is,
initiated by the receiver, or “work sharing,” that is, initiated by the donor. The rendezvous
method is neither; instead, donors and receivers efficiently locate one another on an equal
basis, possibly across a large collection of processors. Note that unlike ALPS [13], PEBBL
does not employ a “master of masters” or “hub of hubs” processor, and its parallelization
scheme is in principle indefinitely scalable.

The load balancing scheme has an important secondary function of detecting termination,
which can in general be quite tricky in highly asynchronous parallel programs. The general
approach is a varient of the “four counters” technique proposed in [12], although only three
counters are actually necessary. More details may be found in [6, Section 4.6] or [5, Section
4.5].

3.6 Ramp-up: starting the parallel search

Ramp-up refers to the initial phase of a parallel search algorithm when the number of active
search nodes is of a smaller order than the available processors. In some branch-and-bound
applications, particularly when the number of processors is large, poor handling of ramp-up
can have significant negative impact on algorithm efficiency.

If only one processor at a time can work on a given search node, the vast majority of
processors will be idle during the initial development of the search tree. Often, this idleness
is not a major issue, because the search tree grows quickly. However, in some applications,
the root node of the tree, and possibly nodes near it, may take much longer to bound or
separate than “typical” nodes later in the search. In such situations, the ramp-up phase is
elongated and it may be hard to make efficient use of all available processors.

To help you improve ramp-up performance, PEBBL implements a special ramp-up phase
in which the application may exploit parallelism within each subproblem, if it is available.
During the ramp-up phase, all processors synchronously develop the same search nodes
around the root of the branch-and-bound tree. During this phase, the method rampingUp(),
available in both parallelBranching and parallelBranchSub, returns true; otherwise, it
returns false. In response to the value returned by rampingUp(), boundComputation,
splitComputation, and even makeChild may then attempt to explore some form of par-
allelism within the processing of individual search tree nodes. These methods are free to
conduct MPI communication, but should be sure to leave all processors in a uniform state
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when returning.
Ramp-up execution is controlled by two virtual methods, continueRampup() and force

ContinueRampUp(). When both these methods return false, PEBBL will terminate the
ramp-up phase. PEBBL then automatically partitions the active search nodes, leaving each
worker processor with an approximately equal number of active subproblems. PEBBL then
begins its standard, asynchronous cluster/worker/hub search phase.

The default implementation of continueRampup() is controlled by two parameters, ramp
UpPoolLimit and rampUpPoolLimitFac. It returns true as long as the number of active
subproblems does not exceed max{rampUpPoolLimit, p · rampUpPoolLimitFac}, where p is
the total number of processors. The default implementation of forceContinueRampUp() is
to return true whenever the total number of subproblems created is does not exceed the pa-
rameter minRampUpSubprobsCreated. You may override these rudimentary implementations
with implemetations more specific to your application.

3.7 On-processor multitasking: threads and the scheduler

Once the ramp-up phase is over, the PEBBL parallel layer requires each processor to per-
form a certain degree of multitasking. PEBBL handles the multitasking through what it
calls “threads”, although they are not true threads, for example, in the POSIX sense: such
true multithreading would be incompatible with some MPI implementations and MPP op-
erating systems. Instead, PEBBL uses non-preemptive threads, essentially coroutines that
voluntarily and periodically return control to a central scheduler module.

The PEBBL scheduler module recognizes two main types of threads: message-triggered
and compute threads. Each message-triggered thread effectively “listens” for MPI messages
with a specific tag value. If the scheduler detects a complete received message with the
specified tag, it activates the thread to process the message (which may involve sending
messages to other processors). The thread then returns to a dormant state until the scheduler
detects the next message with its specified tag.

If there are no messages pending processing, the scheduler instead tries to activate the
compute threads. Each compute thread has a bias which may be considered as a kind of
priority. Among all compute threads that have declared themselves “ready”, the schedule
tries to allocate CPU resources in proportion to the threads’ bias values. Threads can adjust
their bias values over time.

Figure 6 depicts PEBBL’s standard threads. You may add additional threads of your
own, but that is an advanced topic not currently covered in this guide. The standard threads
are as follows:

Incumbent broadcast thread: This message-triggered thread is active on all processors.
Its job is to make sure that all processors become aware, as soon as possible, of the
objective value used to prune the search tree. It implements a form of asynchronous
broadcast using a tree with an adjustable branching factor.

Early output thread: This message-triggered thread is active on all processors if the pa-
rameter earlyOutputMinutes is positive. Otherwise, it is absent. This thread coordi-
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Figure 6: PEBBL’s standard threads. Compute threads are shaded; all other threads are
message-triggered. A dashed outline indicates that the thread may not exist in some cases.

nates the process of writing solution files, making sure the file is written by a processor
that is priviledged to do I/O (the MPI standard specifies that not all processors, and
perhaps only one processor, must have file and console output capabilities).

Hub thread: This thread is active on all hub processors, and responds to messages from
workers; these messages contain acknowledgements of received subproblems, tokens for
released subproblem, and worker load information. Note that a hub processor’s work
distribution functions may also be activated in other situations besides receipt of one
of these messages, via the parallelBranching::activateHub() method.

Load balance and termination thread: This thread is active on all hub processors, and
manages termination detection. It also controls checkpointing if checkPointMinutes
is positive. When there is more than one cluster, it also manages the balancing of
workload between clusters. It is generally message-triggered, but in multi-cluster sit-
uations it may also self-activate on some processors via the ready() predicate called
by the scheduler.

Worker thread: This compute thread is active on all worker processors, and manages the
processing of subproblems.

Incumbent heuristic thread: This optional compute thread may be active only on work-
ers, and is controlled by the parameter useIncumbentThread. Its purpose is to heuristi-
cally search for improved incumbent solutions. Packaging this function into a compute
thread allows PEBBL to directly control the fraction of CPU resources being dedicated
to heuristic incumbent construction; the bias of this thread automatically adjusts based
on the relative gap, the relative difference between the incumbent value and the best
known bound among active search tree nodes. However, if the worker thread becomes
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idle (because it has no subproblems to process), the incumbent search thread will at-
tempt to use all available CPU resources on the worker. This behavior can be useful
near the beginning of a run if the number of subproblems at the end of the ramp-up
phase is less than the total number of worker processors: instead of being totally idle,
worker processors attempt to heuristically find incumbents until their worker threads
receive subproblems.

Subproblem server thread: This message-triggered thread is active on all worker proces-
sors. It receives messages from the hub processors, and may in response send subprob-
lems to other workers for processing.

Subproblem receiver thread: This message-triggered thread is active on all worker pro-
cessors, receiving subproblems for processing.

Worker auxiliary thread: This message-triggered thread is active on workers that are
not also functioning as hubs. The hub sends this thread various instructions, such as
to write a checkpoint, check for termination, or terminate the search process. It also
periodially receives information relevant to the load balancing algorithms.

3.8 Enumeration capabilities

In response to the requirements of some applications at Sandia National Laborato-
ries, PEBBL also has the ability to enumerate alternative optima and near-optimal
solutions to problems. These capabilities are currently only supported in PEBBL’s
serial layer. These capabilities are controlled by the parameters enumAbsTolerance,
enumRelTolerance, and enumCount. If exactly one of the two enumeration tolerance
is set, PEBBL attempts to enumerate all solutions within the given additive or relative
distance from optimality. If enumCount is also set, at most enumCount solutions will
be returned. If enumCount is set, but neither of the enumeration tolerances is, PEBBL
attempts to return the best enumCount solutions. When both enumAbsTolerance and
enumRelTolerance are set, then fathoming is not considered if a subproblem is within
either the absolute or the relative enumeration tolerance.

The enumeration parameters enumAbsTolerance and enumRelTolerance complement
the bound parameters relTolerance and absTolerance. The bound parameters con-
trol how fathoming is performed, comparing the value of an incumbent with a sub-
problem’s lower bound. The enumeration parameters determine whether fathoming
considered. These tolerances compare the incumbent with the lower bound in a simi-
lar fashion, but the goal is to determine whether this subproblem could possibly contain
a near-optimal solution.

The enumeration mechanism maintains a cache of incumbent solutions. This cache
uses a splay tree to enable effective insertion as well as search for the incumbents that
are within tolerance of the best observed incumbent. As new points are added to the

23



cache, other points are removed if they are not within tolerance or if the number of
solutions in the cache exceeds enumCount. This generic mechanism does not need to
be adapted for new applications, but it can be customized (for example to control the
final output).

Note: the early output mechanism and enumeration mechanisms currently are inde-
pendent. When using enumeration, the early output mechanism simply outputs the
best incumbent.

4 Creating PEBBL Applications

When using PEBBL, you should generally first create a serial PEBBL application and debug
it using whatever C++ development environment you are most comfortable with. Then you
should extend it to a parallel application using MPI.

4.1 Defining a serial application

To create a basic serial PEBBL application, you need to do three things:

• Define a class extending branching

• Define a class extending branchSub

• Create a “driver” program that runs your algorithm.

You may do all these things in a single C++ file. Conventionally, however, you would use a
header (.h or .hpp) file to define your new classes, one or more additional C++ source files
containing code to implement methods for those classes, and a C++ source containing the
driver.

To load the basic definitions of branching and branchSub into the compiler, you should
#include the file <pebbl/branching.h>. Supposing your classes are called myBranching

and myBranchSub , and you are using a single header file, it should take the general form
shown in Figure 7.

We now describe how to construct these classes; in the course of this description, you
should also refer to the files serialCore.h, and serialKnapsack.{h,cpp} in directory
pebbl/src/example/.

4.1.1 Methods you should create — branching-derived class

In your branching-derived derived class, for example myBranching , you should define the
following methods:

Constructor

Classes derived from branching should have a constructor with no arguments; the diamond
inheritance pattern used by PEBBL means that constructors with arguments are in general
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#include <pebbl/branching.h>

using namespace pebbl;

class myBranchSub; // Forward declaration

class myBranching : virtual public branching

{
friend class myBranchSub ;

public:
...

}

class myBranchSub : virtual public branchSub

{
friend class myBranching ;

protected:

// A pointer to the global branching object

myBranching * globalPtr;
...

public:

// Return a pointer to the global branching object

myBranching * global() const { return globalPtr; }

// Return a pointer to the base class of the global branching object

branching* bGlobal() const { return global(); }
...

}

Figure 7: Standard code pattern for creating a serial PEBBL application.
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not advisable. The constructor should contain a call to branching::branchingInit(· · · ). If
you want to maximize the objective function, you should supply branchingInit an argument
of maximization; if you want to minimize, you can leave the argument list blank, or supply
the argument minimization. Thus, one might have something like

myBranching () { branchingInit(minimization); · · · };

Destructor

Naturally, you should also have a destructor for your branching-derived class, for example:

∼myBranching () { · · · };

branchSub* blankSub()

You must provide a blankSub() method of return type branchSub* that returns an empty
subproblem specific to your application. To avoid circularity, the class declaration for
myBranching should declare this method, but not include its code, as in:

branchSub* blankSub();

Once myBranching and myBranchSub are both declared, you should have the actual code,
as in:

branchSub* myBranching ::blankSub()

{
myBranchSub * newSP = new myBranchSub ;

newSP->setGlobalInfo(this);

};

Here, myBranchSub ::setGlobalInfo should be a routine that copies any necessary infor-
mation from the myBranching object into a myBranchSub object. At a minimum, it should
set globalPtr.

bool setupProblem(int& argc,char**& argv)

This method is responsible for reading in any input data describing the problem instance.
Its arguments argc and argv are standard unix-style command line descriptors. However,
by the time setupProblem is called, these arguments will be “cleaned” of any MPI-related
information and parameter settings recognized by PEBBL. Typically, setupProblem should
simply read a problem description from the file whose name is in argv[1].

serialPrintSolution(const char* header,const char* footer,std::ostream& s)

Typically, the branching-derived class should have the ability to store a single solution to
the optimization problem. The serialPrintSolution method should print this solution to
the stream s, preceded by the header, and followed by footer. Strictly speaking, you do
not have to implement this method — it has a default implementation of { }. However, it
should be defined if you need PEBBL to print out anything besides the value of the solution.
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4.1.2 Methods you should create — branchSub-derived class

Constructor

As with the branching-derived class, you should have an empty-argument constructor for
your branchSub-derived class, for example:

myBranchSub () { · · · };

Destructor

A destructor is naturally required, for example:

∼myBranchSub () { · · · };

branching* bGlobal() const

This method is required for methods in branchSub to locate the corresponding problem-wide
information in the corresponding branching object. Presuming you have declared a data
member myBranching * globalPtr as in Figure 7, then Figure 7’s definition should suffice:

branching* bGlobal() const { return global(); };

Your implementations of methods such as branchComputation(), will almost certainly re-
quire access to problem-wide but application-specific information. In the implementation
above, this may be obtained directly through globalPtr or slightly more elegantly via

myBranching * global() const { return globalPtr; };

void setGlobalInfo(myBranching* global )

The purpose of this routine should be to “bind” a particular subproblem object to the
problem description embodied in the object *global . At a minimum, this requires setting
globalPtr. For example:

void setGlobalInfo(myBranching* global )

{
globalPtr = global ;

(Copy any other desired information from *global )
}

void setRootComputation()

A call to this method indicates that a myBranchSub object should be made into a root
subproblem. Information on the problem description should be obtained, for example, via
global() or globalPtr.
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void boundComputation()

This method should attempt to bound the subproblem. When the bound computation
is complete, it should execute setState(bounded). If the method exits without calling
setState(bounded) to declare the subproblem bounded, PEBBL will assume that the
bounding operation is incomplete: it will call boundComputation() repeatedly until the sub-
problem is fathomed or declared bounded. To indicate the value of the bound, you set the
double data member bound; you may update bound as many times as you like, and PEBBL
will use the information immediately, even before the problem state becomes bounded — for
example, a sequence of calls to boundComputation() may gradually improve the bound. To
indicate infeasibility of a subproblem, or that it cannot possibly improve upon the current
solution stored in bGlobal()->incumbentValue, you may execute setState(dead).

bool candidateSolution()

PEBBL will only invoke this method for subproblems in the bounded state. Returning
true means that the just-computed bound is exact and it is not necessary to separate the
subproblem — that is, a subproblem is a terminal node of the branch-and-bound tree.
In integer programming, for example, you would want candidateSolution() to return
true whenever the linear programming relaxation produces a solution that has all integer
values. Returning true also tells PEBBL that you have computed a feasible solution to the
overall optimization problem, as opposed to just a bound. PEBBL will most likely invoke
updateIncumbent() (see below) to retrieve this solution.

int splitComputation()

This method should attempt to separate the subproblem. Similarly to boundComputation(),
it will be called repeatedly until it calls setState(separated). The value returned is the
number k of child problems generated (simply 2 for many applications). The number of chil-
dren can vary between subproblems. If you return without declaring the problem separated,
PEBBL will ignore the return value and invoke splitComputation() again later. In the
course of separating the problem, you may update bound at any time to reflect any further in-
formation gained in the course of separation; PEBBL will use this information immediately.
This routine may also execute setState(dead), in which case PEBBL will immediately
prune the subproblem.

branchSub* makeChild(int whichChild)

This method should create a child problem and return it. The argument whichChild may
take any value between 0 and k−1, where k was the value returned by splitComputation()

for this subproblem. A value of 0 indicates you should create the first child, a value of 1
indicates you should create the second child, and so forth.

When you create a child problem, you should make sure that its globalPtr is set as in
the parent problem, and all local data are initialized correctly.

void updateIncumbent()

This method should set the state of the branching-derived class — e.g. myBranching —
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to reflect a feasible problem solution correspondig to this subproblem. PEBBL will typically
call this method after candidateSolution() returns true. A typical implementation will
look like:

void myBranchSub ::updateIncumbent()

{
bGlobal()->incumbentValue = bound; // Set the incumbent value

(Copy the solution itself to *global())
bGlobal()->signalIncumbent();

}

Once the solution has been copied to a branching-derived class, it can be written by the
serialPrintSolution(· · · ) method. The call to signalIncumbent() tells PEBBL that
the subproblem pool should be pruned. Once the application is ported to the parallel layer,
signalIncumbent() will also initiate interprocessor communication to broadcast the new
incumbent value.

4.1.3 Selected additional methods

We now present an inexhaustive list of additional methods that you may wish to override
for particular applications.

void branching::preprocess()

This method is intended for “preprocessing” of the problem prior to commencing the branch-
and-bound search; the default implementation is an empty stub. In principle, its functions
could be combined with setupProblem(· · · ), but it is provided for generality. Note that
once you migrate your application to the parallel layer, preprocess() is called after the
problem instance is broadcast to all processors, and could potentially be parallelized.

double branching::initialGuess()

This method is provided to allow you to compute a “quick and dirty” initial guess at the
solution. In a knapsack problem, for example, this routine could run a simple greedy heuris-
tic. Your implementation need not be guaranteed to find anything: for example, the default
implementation is an empty stub. If you do find something, you should set incumbentValue
and the application-specific data structures (within myBranching , for example), describing
the present solution.

bool branching::haveIncumbentHeuristic()

The default implementation of this method just returns false. You should change it to
return true if your application has a way of trying to obtain a feasible solution from a
non-terminal bounded subproblem.

void branchSub::incumbentHeuristic()

PEBBL will only call this method if haveIncumbentHeuristic() returns true, and only for
bounded subproblems for which candidateSolution() returns false. If called, this method
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should attempt to create a feasible solution to this problem. If this problem has a better
objective value than bGlobal()->incumbentValue, you should call updateIncumbent(), or
perform an equivalent sequence of operations.

void branchSub::makeCurrentEffect()

PEBBL has the notion of a “current subproblem” – the one presently being bounded or
separated. The method makeCurrentEffect() provides a “hook” that is called whenever a
subproblem is made “current”. In a branch-and-cut algorithm, for example, it could load
the subproblem’s cuts into the linear programming solver. Its default implementation is a
stub.

void branchSub::noLongerCurrentEffect()

PEBBL calls this “hook” whenever a subproblem ceases to be “current”. Again, its default
implemetation is a stub.

bool branchSub::forceStayCurrent()

PEBL calls this method when it is considering replacing the current subproblem with a
different one. Returning true indicates that the current subproblem should be kept current
if at all possible. The default implementation always returns false, meaning that PEBBL
is free to “unload” the current subproblem, and replace it with a different one.

Creating your own parameters

In addition to PEBBL’s existing parameters, you may create your own command-line pa-
rameters. The simplest place to do so is in the constructor of your branching-derived class.
Parameter creation statements usually have the general form

create categorized parameter("commandLineName ",

internalName,

"<datatype >",

"defaultValue ",

"text description ",

"category ",

error check object )

Here,

commandLineName is the name to be recognized on the command line. For example, fooBar
will cause the option --fooBar =value to be recognized on the command line.

internalName is a reference to a data member in which to store the value of the parameter.

datatype is the C++ datatype of internalName . Common choices are bool, int, double,
and string.

defaultValue is the default value for the parameter. Data member internalName will
take this value if command line parameter --commandLineName is not specified.
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text description is a parameter description printed in response to --help. For descrip-
tions longer than one line, embed newline-tab character sequences (“\n\t”) in this
text.

category The category header to be used when printing the parameter description in re-
sponse to --help. You may invent new categories.

error check object specifies simple constraints on the value of the parameter. For de-
tails, refer to the UTILIB Parameter class documentation [7].

Note that for parameters of type bool, you may omit =value on the command line, in which
case the value is set to true. That is, --fooBar is equivalent to --fooBar =true

You may specify parameter error checks more elaborate than those available in error

check object by overloading the method bool branching::checkParameters; if you de-
tect an error in this routine, print a diagnostic message and return false. If you do not, ex-
ecute return branching::checkParameters() to invoke the standard checks on PEBBL’s
built-in parameters.

4.1.4 Constructing a serial driver

Once you have defined branching- and branchSub-derived clases as above, you need to
create a “driver” program that invokes them. A typical form for a driver program would be:

int main(int argc, char** argv)

{
InitializeTiming();

myBranching instance;

bool flag = instance.setup(argc,argv);

if (flag)

{
instance.reset();

instance.solve();

}
return !flag;

}

Note that the main PEBBL header file <pebbl/branching.h> automatically includes the
necessary UTILIB header files to define the method InitializeTiming().

Note that setup(· · · ), reset(), and solve() are all methods of the branching class
that you typically do not override. Calling setup(argc,argv) parses the command line,
extracting and processing all command line arguments recognizable as PEBBL parameters.
It then calls your implementation of setupProblem, with argc and argv adjusted so that
parameter-setting arguments are removed; setup’s returning true indicates both that all
command line parameters were processed correctly, and that your setupProblem imple-
mentation returned true, indicating it was successful. The method solve() invokes the

31



branch-and-bound search engine, and prints subproblem count and timing statistics upon
termination. It also uses your serialPrintSolution(· · · ) implementation to write the
final solution to a file whose name is derived from the first command line argument not
recognizable as a parameter setting (if there is none, the file is called solution.dat).

Supposing your driver were called myDriver , both of the command lines

myDriver datafile

myDriver --relTolerance=0.05 --earlyOutputMinutes=2 datafile

would call setup with argv[1] containing the null-terminated string datafile . In the
second case, setup would automatically recognize the PEBBL parameters relTolerance

and earlyOutputMinutes, and their settings would be reflected when executing solve().
For a catalog of recognized parameters, refer to Section 5.

The setup(· · · ) method automatically recognizes several special command-line argu-
ments:

--help Causes setup to print a usage line followed by a description of all available param-
eters, and then return false (so that the driver above would not attempt to solve a
problem). If you want to control the form of the usage line, override the method void

branching::write usage info(char* progName,std::ostream& os).

--version must be the first argument if present. It causes setup to print the value of the
static std::string data member branching::version info and return false (so
that the driver above would then immediately exit). You may alter the contents of
version info, for example, in the constructor for your branching-derived class.

--param-file=file allows multiple parameter settings to be read from file — see the
UTILIB Parameter class documentation for a description of the file format.

Note that PEBBL applications can be invoked in ways other than the simple driver
above; for example, they could be embedded in more complicated programs. However, the
techniques for doing so are not covered in this version of the user’s guide.

4.2 Defining a parallel application

Suppose now that your serial layer applications runs acceptably, and you wish to parallelize
it. Figure 8 outlines the recommended inheritance and pointer pattern for creating parallel
layer classes from a serial application. Here, the serial layer classes are myBranching and
myBranchSub , and the respective parallel layer classes are myParBranching and myParSub .
Note that the header file <pebbl/parBranching.h> defines all the classes in both the serial
and parallel layers. You must configure with MPI options in order to develop a parallel
application. Otherwise, none of the code for parallel PEBBL applications will be compiled.

Note that PEBBL uses parallelBranchSub::pGlobal() to find the parBranching ob-
ject associated with a subproblem object. The method global() in Figure 8 would be
for your own use and might not be necessary if your parBranching-derived class does not
encapsulate significantly more data than your branching-derived class.
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#include <pebbl/parBranching.h>

using namespace pebbl;

class myParSub; // Forward declaration

class myParBranching :

virtual public parallelBranching,

virtual public myBranching

{
public:

...

};

class myParBranchSub :

virtual public parallelBranchSub,

virtual public myBranchSub

{
protected:

// A pointer to the global parallel branching object

myParBranching* globalPtr;

public:

// Return a pointer to the global branching object

myParBranching * global() const { return globalPtr; }

// Return a pointer to the parallel global base class object

parallelBranching* pGlobal() const { return global(); }
...

};

Figure 8: Standard code pattern for creating a parallel PEBBL application.
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4.2.1 Methods you should create — parallelBranching-derived class

Constructor

A constructor with no arguments is advised; it will automatically call the no-argument
constructor for your serial application class, such as myBranching .

myParBranching () { · · · };

Destructor

You should also have a destructor:

∼myParBranching () { · · · };

parallelBranchSub* blankParallelSub()

This method is blankSub, but should return a parallel subproblem with correctly initialized
global pointers, as in:

parallelBranchSub* myBranching ::blankSub()

{
myParSub * newSP = new myParSub ;

newSP->setGlobalInfo(this);

};

See below for a possible implementation of myParSub ::setGlobalInfo.

void pack(utilib::PackBuffer& outBuffer)

PEBBL uses this method when broadcasting the problem description. It should write all the
the information describing a problem instance (i.e. everything read by setupProblem(· · · ))
into the UTILIB PackBuffer supplied in the argument outBuffer. Writing to a PackBuffer

is very similar to writing to an unformatted stream: for most native C++ datatypes, the
<< operator, that is, “outBuffer << data ” will write scalar data. Entire UTILIB arrays,
for example of datatype IntVector or DoubleVector, may also be written with <<. See the
UTILIB documentation for the details of PackBuffers.

void unpack(utilib::UnPackBuffer& inBuffer)

Again, PEBBL uses this method when broadcasting the problem description. Its job is to
read from inBuffer the information written by pack. Most native C++ datatypes, along
with many UTILIB-supplied datatypes, may be read via the the >> operator, applied in
exactly the same order as you used << in pack. For example, data written by outBuffer <<

time << money; in pack may be read via inBuffer >> time >> money; in unpack. The
<< can also read entire UTILIB arrays.
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int spPackSize()

This method should return an upper bound on the number of bytes needed to pack all the
information to describe a subproblem — that is, the maximum amount of space needed
by the method myParSub ::pack(· · · ) described below. It does not refer to the amount
of space needed by myParBranching ::pack, which PEBBL is able to detect automati-
cally. In PackBuffers and UnPackBuffers, most C++ native datatypes require the same
amount of space as their machine representations: i.e a data member of type x requires
sizeof(x ) bytes. You should use sizeof(·) in your implementation to make sure it is
portable between 32- and 64-bit architectures and varying compilers. For UTILIB arrays,
the space required is a single sizeof(size t) to hold the size of the array, plus storage
for each of the data elements. The spPackSize() method is called after the problem
has been read and broadcast, so all information set by myBranching ::setupProblem and
myParBranching ::unpack should be available in all processors.

void packSolution(PackBuffer& outBuffer)

PEBBL uses this method to send problem solutions between processors. It should pack
(typically using the << operator) a full description of the current problem solution into
outBuffer.

void unpackSolution(UnPackBuffer& inBuffer)

This method should read the information written by packSolution, typically using the >>

operator.

int solutionBufferSize()

Should return an upper bound on the size (in bytes) of the buffer needed by packSolution

and unpackSolution.

Note that it is possible to implement packSolution and unpackSolution via stubs
and have solutionBufferSize() simply return 0. To do so, however, you should set the
parameter printSolutionSynch to false. This setting tells PEBBL’s parallel layer that any
processor is permitted to do I/O, and it is thus unnecessary to move subproblem solutions
between processors.

4.2.2 Methods you should create — parallelBranchSub-derived class

Constructor

Again, you need an empty-argument constructor, for example:

myParSub () { · · · };

Destructor

You also need a destructor:
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∼myParSub () { · · · };

parallelBranching* pGlobal() const

This method is similar to bGlobal but returns a pointer of type parallelBranching*,
implementing the third dashed arrow in Figure 5. Given globalPtr as defined in Figure 8,
it could be implemented via

myParBranching* global() const { return globalPtr; }
parallelBranching* pGlobal() const { return global(); }

void setGlobalInfo(myParBranching* global )

As in the serial, case, the purpose of this routine should be to “bind” a particular subproblem
object to the problem instance description embodied in the object global . It should also
make sure that the corresponding serial-layer binding is also performed. For example:

void setGlobalInfo(myParBranching* global )

{
globalPtr = global ;

myBranching ::setGlobalInfo(global ); // Sets serial layer pointer etc.
...

}

void pack(utilib::PackBuffer& outBuffer)

This method should pack the description of the subproblem into outBuffer, typically using
the << operator.

void unpack(utilib::UnPackBuffer& inBuffer)

This method should unpack the description of the subproblem from inBuffer, typically
using the >> operator.

virtual parallelBranchSub* makeParallelChild(int whichChild)

This method is similar to makeChild, but returns a parallelBranchSub*. It should create
the whichChild’th child of the present subproblem, counting from 0 to k− 1, where k is the
number of children. PEBBL only calls this method for subproblems in the separated state.

4.2.3 Standard disambiguations

While the PEBBL “diamond” inheritance pattern is powerful, it may also lead to some
ambiguities. When an inherited method is defined in several different base classes, the C++
compiler may be unsure which implementation to use. When such ambiguity occurs when
compiling a parallel PEBBL application, the general rule is to use the implementation in
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either parallelBranching or parallelBranchSub, which will in turn automatically call the
appropriate serial layer routine. For example, it may be necessary to define

bool setup(int& argc,char**& argv)

{
return parallelBranching::setup(argc,argv);

}

and similarly for a few other routines.

4.2.4 Selected additional methods — incumbent heuristic

PEBBL’s parallel layer provides facilities allowing careful control over how much CPU time
per processor is spent on incumbent heuristics. In the parallel setting, there are two possible
levels of incumbent heuristic: a “quick” incumbent heuristic that is run for each bounded
subproblem, much as in the serial layer, and a separate incumbent thread whose CPU usage
is controlled by the thread scheduler. We now consider the methods that implement this
functionality.

In your implementations of these methods, keep in mind that whenever you change the
incumbent, you should do the following things, as outlined in the sample implementation of
branching::updateIncumbent() above.

• Update branching::bound to reflect the value of the incumbent.

• Copy a description of the solution into application-specific data structures in your
branching-derived class (such as myBranching ) so that it can be output via your
serialPrintSolution method.

• Call signalIncumbent().

In the parallel layer, the call to signalIncumbent() is crucial to making sure that all pro-
cessors become aware of the new incumbent value.

void parallelBranchSub::quickIncumbentHeuristic()

The heuristic to be run for every bounded subproblem. The default implementation is a stub,
and you need not attempt to run your heuristic every time quickIncumbentHeuristic()

is called. For example, your implementation could immediately return if the subproblem
does not look particularly “attractive”. If you do run your heuristic and find an improved
incumbent, you should call updateIncumbent() or perform a similar sequence of operations.
The process of calling quickIncumbentHeuristic() is separate from the heuristic thread
and does not require existence of the heuristic thread.

bool parallelBranching::hasParallelIncumbentHeuristic()

Returns false by default. Return true if your implementation has the capability to run a
heuristic thread. PEBBL will create a heuristic thread if this method returns true and the
parameter useIncumbentThread is true.
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void parallelBranchSub::feedToIncumbentThread()

This method is a “hook” called for each bounded subproblem. It is intended to examine
a subproblem, and if it seems sufficiently attractive, copy some representation of it to the
data structures used by the routine parallelIncumbentHeuristic. In creating these data
structures, you may want to make them able to store representations of more than one
subproblem.

void parallelIncumbentHeuristic(double* controlParam)

This is the method invoked by the incumbent thread. The argument controlParam is set by
the scheduler to try to control the amount of CPU time each call uses. If you wish, you may
ignore the value of this argument, and simply set *controlParam = 1 upon exit. If you wish
to be more responsive to the scheduler, try to do an amount of work roughly proportional
(in some sense of your own choosing) to *controlParam, and then set *controlParam equal
to the amount of work performed.

ThreadObj::ThreadState incumbentHeuristicState()

This method indicates whether the incumbent thread is ready to run. The default im-
plementation is to return ThreadObj::ThreadBlocked, indicating the thread is unable to
run. As soon as your thread has some data upon which to operate, you should return
ThreadObj::ThreadReady instead.

double incumbentThreadBias()

This method indicates the importance of running the incumbent heuristic relative to the
regular branch-and-bound worker process. The default implementation uses a formula in-
volving various standard parameters and the current relative gap between the best known
search node and the incumbent; see Section 5.8. You are free to override this method with
something more specific to your application.

4.2.5 Selected additional methods — ramp-up

Section 3.6 describes how PEBBL can take advantage of non-tree parallelism during the
early growth of the search tree. During the ramp-up phase, the methods boundComputation,
splitComputation, and makeChild are called synchronously on identical subproblems for
all processors. In your myParSub class, you may further override the implementations of
these methods in your myBranchSub class, so they can exploit synchronous parallelism dur-
ing ramp-up. The method parallelBranchSub::rampingUp() will return true during the
ramp-up phase, and false otherwise.

At any point in your implementation of ramp-up that you could change the incumbent in
a way that might not be identical for all processors, you should call parallelBranchSub::
rampUpIncumbentSync(), or the ramp-up phase may deadlock.

void parallelBranchSub::rampUpIncumbentHeuristic()

This method substitutes for the usual quickIncumbentHeuristic() during the ramp-up
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phase; note that feedToIncumbentThread() is still called during ramp-up, even though
the incumbent heuristic thread will not be running yet. The default implementation of
rampUpIncumbentHeuristic() is:

if (bGlobal()->haveIncumbentHeuristic())

{
incumbentHeuristic();

pGlobal()->rampUpIncumbentSync();

} .

bool parallelBranching::continueRampUp()

Ramp up will continue as long as either this method or forceContinueRampUp() return
true. The default implementation is described in Section 3.6, but you are free to override
it.

bool forceContinueRampUp()

Ramp up will continue as long as either this method or continueRampUp() return true.
The default implementation is described in Section 3.6, but you are free to override it.

void rampUpCleanUp()

PEBBL calls this method on all processors when the ramp-up phase is over. The default
implementation is a stub.

4.2.6 Selected additional methods — checkpoints

If your application maintains data structures not written and read by your implementa-
tions of the methods myParBranching ::pack, myParBranching ::unpack, myParSub ::

pack, and myParSub ::unpack, then PEBBL’s checkpointing feature will neither save nor
restore them. In this case, you need to define a few extra methods in order for checkpointing
to work properly:

void myParBranching ::appCheckpointWrite(PackBuffer& outBuf)

Write application-specific data to the PackBuffer outBuf, typically using the << operator.
This method will be called separately for each processor and for each checkpoint. The default
implementation is a stub.

void myParBranching ::appCheckpointRead(UnPackBuffer& inBuf)

Read the information written by appCheckpointWrite from inBuf, typically using the >>

operator. This routine will be called on each processor when a checkpoint is read using the
--restart option. The default implementation is a stub.

void myParBranching ::appMergeGlobalData(UnPackBuffer& inBuf)

This method is similar to the appCheckpointRead routine, but invoked when restarting with
--reconfigure. It will be called on every processor, but multiple times — once for each
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int main(int argc, char* argv[])

{
bool flag = true;

InitializeTiming();

uMPI::init(&argc,&argv,MPI COMM WORLD);

CommonIO::begin();

CommonIO::setIOFlush(1);

myParBranching instance;

flag = instance.setup(argc,argv);

if (flag)

{
instance.reset();

instance.printConfiguration();

instance.solve();

}

CommonIO::end();

uMPI::done();

return !flag;

}

Figure 9: Example parallel driver program.

dataset written by appCheckpointWrite when the checkpoint was created. When restarting
with --reconfigure, the number of worker and hub processors may be different from when
the checkpoint was written.

4.2.7 Constructing a driver

Driver programs for parallel PEBBL applications look quite similar to those for serial PEBBL
applications; the main difference is that you need to initialize the MPI and UTILIB CommonIO

environments before loading the problem. Figure 9 shows a simple parallel driver; note that
the PEBBL header file <pebbl/parBranching.h> automatically defines the classes uMPI

and CommonIO from UTILIB, along with the InitializeTiming() method. The call to
printConfiguration() is optional, and prints information on the number of worker and
hub processors.

A driver program can be built using the libraries in acro/lib and headers in acro/

include. For example,
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g++ -I. -Iacro/include knapsack.cpp -c -o knapsack.o

can be used to build an object file, and

g++ -o knapsack knapsack.o -Lacro/lib -lpebbl -lutilib -lm

is an example of how an executable can be built. Note that a convenient way to build with
MPI is with a the MPI compiler script mpiCC. This script can simply replace the g++ compiler
in this example.

A parallel driver should in general be invoked with the mpirun command (or mpiexec in
some batch environments). For example, if your parallel driver were called myParDriver ,
the command

mpirun -np 4 myParDriver --useIncumbentThread=false datafile

would run it on four processors, without an incumbent heuristic thread, and with the input
file datafile .

It is also possible to construct combined serial/parallel drivers that sense whether they
are being run in serial or parallel, and invoke the appropriate PEBBL class, for example
myBranching or myParBranching . For example, see pebbl/src/example/knapsack.cpp

This driver also illustrates the trapping of exceptions that may be thrown by PEBBL.
If MPI detects only one processor, such adaptive serial/parallel drivers will use the se-

rial application class, and otherwise the parallel one. Note that in some cases, usually for
debugging purposes, you may want to run your parallel class, but only on one processor. To
provide a means of doing so, the template function

parallel exec test<myParBranching >(int argc, char** argv, int nproc)

scans the command line for the parameter --forceParallel; it returns true if either
nproc > 1 or --forceParallel is present, and otherwise false.

5 Parameters

This section describes various command line parameters that PEBBL recognizes. The listing
is not exhaustive, but contains the parameters you should typically find most useful. A com-
plete listing is produced by specifying the --help parameter to driver programs contructed
in the manner described in this guide. You may add your own application parameters as
described in Section 4.1.3.

5.1 Checkpointing

abortCheckpointCount

Layer: Parallel only
Datatype: int

Default value: 0
Constraints: Nonnegative
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Primarily for debugging purposes. Causes an abort after writing this many checkpoints. A
zero value, which is the default, disables this feature.

checkpointDir

Layer: Parallel only
Datatype: string

Default value: Current directory, or from environment variable

Directory to place checkpoint files. The environment variable PEBBL CHECKPOINT DIR, if
defined, provides a default value. If this variable is undefined, the default is the process
current directory.

checkpointMinInterval

Layer: Parallel only
Datatype: double

Default value: 0
Constraints: Nonnegative

Minimum minutes of CPU time per processor between writing checkpoints.

checkpointMinutes

Layer: Parallel only
Datatype: double

Default value: 0
Constraints: Nonnegative

Desired minutes between starting to write successive checkpoints; the default value of 0
disables checkpointing.

reconfigure

Layer: Parallel only
Datatype: bool

Default value: false

Resume from a previously written checkpoint, reading the checkpoint files serially. The
configuration of worker and hub processors need not be identical to the run that wrote the
checkpoint.

restart

Layer: Parallel only
Datatype: bool

Default value: false

Restart from a previously saved checkpoint, attempting to read the checkpoint files in paral-
lel. The configuration of worker and hub processors must be identical to the run that wrote
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the checkpoint.

5.2 Debugging aids

debug

Layer: Serial and parallel
Datatype: int

Default value: 0
Constraints Nonnegative

Debugging diagnostic output level.

debug-solver-params

Layer: Serial and parallel
Datatype: bool

Default value: false

If true, print the value of all parameters.

debugSeqDigits

Layer: Parallel only
Datatype: int

Default value: 0
Constraints: Lower bound: 0, Upper bound: 10

Number of sequence digits prepended to output lines. This feature allows you to run debug
output through the unix sort utility to obtain output grouped by processor.

forceParallel

Layer: Parallel only
Datatype: bool

Default value: false

Force the use of a parallel PEBBL solver, even if there is only one processor. Requires correct
driver implementation to function properly.

printDepth

Layer: Serial and parallel
Datatype: bool

Default value: false

Include subproblem depth in debugging output.
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printIntMeasure

Layer: Serial and parallel
Datatype: bool

Default value: false

Include subproblem integrality measures in debugging output.

5.3 Enumeration

enumAbsTolerance

Layer: Serial and parallel
Datatype: double

Default value: -1.0
Constraints Lower bound: −1

Absolute tolerance for enumeration. Find solutions that are within this additive distance of
optimality. The default value means the feature should not be used.

enumCount

Layer: Serial and parallel
Datatype: int

Default value: 0
Constraints Nonnegative

If positive, indicates the limit on the number of enumerated solutions. If enumRelTolerance
or enumAbsTolerance are set, return an arbitrary set of up to enumCount solutions meeting
the tolerance criteria. If neither enumeration tolerance is set, return a set of enumCount

solutions with the best acheivable objective values. A value of 0 disables the feature.

enumRelTolerance

Layer: Serial and parallel
Datatype: double

Default value: -1.0
Constraints Lower bound: −1

Relative tolerance for enumeration. Find solutions that are within this multiplicative factor
of being optimal. For example, a value of 0.1 requests solutions within 10% of optimality.
The default value means the feature is disabled.

5.4 General

help

Layer: Serial and parallel
Datatype: bool

Default value: false
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If true, print usage information and parameter definitions, and then exit.

randomSeed

Layer: Serial and parallel
Datatype: int

Default value: 1
Constraints nonnegative

Global seed for random number generation.

version

Layer: Serial and parallel
Datatype: bool

Default value: false

If true, print version information and exit. Should be used on the command line only, and
as the first parameter specified.

5.5 Incumbent

startIncumbent

Layer: Serial and parallel
Datatype: double

Default value: (none)

Value of some known feasible solution.

5.6 Output

earlyOutputMinutes

Layer: Serial and parallel
Datatype: double

Default value: 0
Constraints Nonnegative

If this many minutes have elapsed since its creation, output the current incumbent to a file
in case of a crash or timeout. The default value disables this feature.

printFullSolution

Layer: Serial and parallel
Datatype: bool

Default value: false

Print full solution to standard output as well as writing it to a file.
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printSolutionSynch

Layer: Parallel only
Datatype: bool

Default value: true

Indicates that only MPI’s designated I/O processor (typically processor 0) is allowed to write
the solution.

statusPrintCount

Layer: Serial and parallel
Datatype: int

Default value: 100,000
Constraints Nonnegative

The maximum number of subproblems bounded between status printouts. Status printouts
are triggered by thresholds on wall clock time and the total number of subproblems bounded
since the last status printout. Since the default value is large, the default behavior will
typically be to trigger status printouts based on wall clock time.

statusPrintSeconds

Layer: Serial and parallel
Datatype: double

Default value: 10.0
Constraints Nonnegative

The maximum number of seconds elapsing between status printouts.

suppressWarnings

Layer: Serial and parallel
Datatype: bool

Default value: false

Suppress warning messages.

trackIncumbent

Layer: Parallel only
Datatype: bool

Default value: false

Print a message whenever there is a new incumbent.
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5.7 Parallel work distribution

clusterSize

Layer: Parallel only
Datatype: int

Default value: 64
Constraints: Lower bound: 1

Maximum number of processors controlled by a single hub (including the hub itself). Unless
numClusters is set, this will be the size of all but the last cluster.

hubsDontWorkSize

Layer: Parallel only
Datatype: int

Default value: 10
Constraints: Lower bound: 2

Size of cluster at or above which hubs do not also function as workers.

numClusters

Layer: Parallel only
Datatype: int

Default value: 1
Constraints: Lower bound: 1

Forces a minimum number of processor clusters, even if all are smaller than clusterSize.

qualityBalance

Layer: Parallel only
Datatype: bool

Default value: true

If true, hubs shift work between workers based on each worker’s best subproblem bound, as
well as the total workload as measured by (1) in Section 3.5. Note that this workload metric
may already take some measure of quality into account if loadMeasureDegree is positive.

minScatterProb

Layer: Parallel only
Datatype: double

Default value: 0.05
Constraints: Lower bound: 0 , Upper bound: 1
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targetScatterProb

Layer: Parallel only
Datatype: double

Default value: 0.25
Constraints: Lower bound: 0, Upper bound: 1

maxScatterProb

Layer: Parallel only
Datatype: double

Default value: 0.90
Constraints: Lower bound: 0, Upper bound: 1

targetWorkerKeepFrac

Layer: Parallel only
Datatype: double

Default value: 0.70
Constraints: Lower bound: 0, Upper bound: 1

These parameters control how frequently subproblems are released from workers. Generally,
you should observe the ordering

minScatterProb ≤ targetScatterProb ≤ maxScatterProb.

The release decision scheme uses the notion of a worker having its “fair share” of work, as
measured by the total weight of the subproblems; see (1) in Section 3.5. The fair share is
defined to be a fraction targetWorkerKeepFrac/W of the total workload, where W is the
total number of worker processors. If a worker has exactly its fair share, then it releases
subproblems with probability targetScatterProb. If it has more than its fair share, it uses
a higher probability, linearly increasing up to maxScatterProb if it has 100% of the work in
the system. Similarly, if it has less than its fair share, it uses a lower probability, linearly
decreasing down to minScatterProb if appears to have no work.

minNonLocalScatterProb

Layer: Parallel only
Datatype: double

Default value: 0.0
Constraints: Lower bound: 0, Upper bound: 1

targetNonLocalScatterProb

Layer: Parallel only
Datatype: double

Default value: 0.33
Constraints: Lower bound: 0, Upper bound: 1
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maxNonLocalScatterProb

Layer: Parallel only
Datatype: double

Default value: default: 0.9
Constraints: Lower bound: 0, Upper bound: 1

When there is more than one cluster, these parameters control the decision, once a worker has
decided to release a subproblem, of whether it should be released to the worker controlling
hub, or to a randomly chosen hub (which could also be the worker’s own hub). This decision
is based on whether the worker’s cluster has its “fair share” of the total workload: a fraction
w(c)/W of the total work, where w(c) is the number of workers in the worker’s cluster, and W
is the total number of workers. When the worker’s cluster has its fair share, random scattering
is performed with probability targetNonLocalScatterProb. If the cluster has more than
its fair share, a larger probability is used, increasing linearly to maxNonLocalScatterProb if
the cluster has all the work in the system. If the cluster has less work, a smaller probability
is used, decreasing linearly to minNonLocalScatterProb if the cluster has no work.

5.8 Parallel thread control

incThreadBiasFactor

Layer: Parallel only
Datatype: double

Default value: 100.0
Constraints: Nonnegative

incThreadBiasPower

Layer: Parallel only
Datatype: double

Default value: 1.0
Constraints: Nonnegative

incThreadMaxBias

Layer: Parallel only
Datatype: double

Default value: 20.0
Constraints: Nonnegative

incThreadMinBias

Layer: Parallel only
Datatype: double

Default value: 1.0
Constraints: Nonnegative

These parameters are used in computing the bias (priority) of the incumbent heuristic thread,
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if it is present. If we represent the above parameters by φ, π, b, and b, respectively, the
formula for the incumbent thread bias b is

b = max
{

b, min
{

b, φrπ
}}

,

where r is the current relative gap, that is, the relative difference between the incumbent
value and the best known bound in the pool of active subproblems.

timeSlice

Layer: Parallel only
Datatype: double

Default value: 0.01
Constraints: Lower bound: 10−7

Target thread timeslice in seconds. This is the typical run time or “granularity” that the
scheduler tries to acheive for each invocation of a compute thread.

useIncumbentThread

Layer: Parallel only
Datatype: bool

Default value: true

Controls whether each worker dedicates a thread to incumbent search. If false, the only
source of new incumbents will be terminal subproblems and quickIncumbentHeuristic().
This parameter is ignored if haveParallelIncumbentHeuristic() returns false.

workerThreadBias

Layer: Parallel only
Datatype: double

Default value: 100.0
Constraints: Nonnegative

Scheduling priority for main worker thread.

5.9 Ramp up (standard implementation)

The following parameters control the default implementation of the ramp-up crossover
mechanism (the transition from ramp-up to “regular” parallel execution). Your applica-
tion may override parallelBranching’s default implementations of continueRampUp() or
forceContinueRampUp() to ignore these parameters or interpret them differently.

minRampUpSubprobsCreated

Layer: Parallel only
Datatype: int

Default value: 0
Constraints: Nonnegative
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Force this many subproblem creations before ramp up ends.

rampUpPoolLimit

Layer: Parallel only
Datatype: int

Default value: 0
Constraints: Nonnegative

Total subproblem pool size beyond which the ramp-up phase may end.

rampUpPoolLimitFac

Layer: Parallel only
Datatype: double

Default value: 1
Constraints: Nonnegative

Desired average number of subproblems per worker processor immediately after ramp-up.

5.10 Search order and protocol

breadthFirst

Layer: Serial and parallel
Datatype: bool

Default value: false

In serial, use breadth-first search; in parallel, use an approximation of breadth-first search
based on treating all subproblem pools as FIFO stacks. Ignored if depthFirst is also
specified.

depthFirst

Layer: Serial and parallel
Datatype: bool

Default value: false

In serial, use depth-first search; in parallel, use an approximation thereof based on treating
all subproblem pools as stacks. Overrides breadthFirst if both are specified.

Note that if neither breadthFirst nor depthFirst is specified, then PEBBL uses best-
first search. That is, it tries to select the subproblem with the lowest possible bound for
minimization problems, and the highest possible bound for maximization problems. In
parallel, conformance to the best-first search order is only approximate.
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initialDive

Layer: Serial and parallel
Datatype: bool

Default value: false

integralityDive

Layer: Serial and parallel
Datatype: bool

Default value: true

These options are useful for applications that do not have a good incumbent heuristic.
Setting initialDive is incompatible with the breadthFirst and depthFirst options, and
integralityDive is only meaningful if initialDive is true. InitialDive specifies that the
best-first search order should only be followed after the first incumbent is found. Beforehand,
PEBBL should “dive” in the tree to try to identify a feasible solution. If integralityDive
is true, then “diving” means giving priority to processing subproblems with the lowest
value of the data member branchSub::integralityMeasure (a value of zero is interpreted
as meaning a subproblem is “integer feasible”). If integralityDive is false, it means
selecting the subproblem with the highest possible depth. Both these techniques tend to
produce initial search trees similar to classical depth-first search. Once an incumbent is
found, PEBBL reverts to best-first search.

eagerBounding

Layer: Serial and parallel
Datatype: bool

Default value: false

Specifies the search protocol implemented by the “eager” handler, as described in Sec-
tion 3.3.3. This handler tries to bound subproblems as soon as they are created and keep all
subproblems in the pool in either the bounded or possibly beingBounded or beginSeparated
states. This handler is recommended for applications in which subproblem bounds are typi-
cally computed very quickly. This parameter is ignored if lazyBounding is also specified.

lazyBounding

Layer: Serial and parallel
Datatype: bool

Default value: false

Specifies the search protocol implemented by the “lazy” handler, as described in Section 3.3.3.
This handler attempts to delay bounding subproblems as long as possible, and fill all sub-
problem pools with boundable and possibly beingBounded or beginSeparated problems.
Once a problem is separated, its children are created as soon as possible. This option takes
precedence over eagerBounding.
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If both eagerBounding and lazyBounding are false, which is the default, PEBBL uses
the “hybrid” handler described in Section 3.3.3. This handler simply chooses problems from
the subproblem pool, attempts to advance them one state in Figure 3, and replaces them.
With this handler, the subproblem pools may contain a mix of all the possible states except
dead.

loadMeasureDegree

Layer: Serial and parallel
Datatype: int

Default value: 1
Constraints Must be 0, 1, 2, or 3

Used to measure the “weight” of a subproblem used to calculate worker and cluster work-
loads. Specifically, if a subproblem has bound b and the current incumbent value is z, its
weight is |z − b|loadMeasureDegree . Note that subproblem weight is used primarily by the load
balancing algorithms in the parallel layer, but LoadMeasureDegree exists in the serial layer
because it is defined by the class loadObject, which both the serial and parallel layers use
to track various subproblem statistics. Its value should not affect the operation of the se-
rial layer. In the parallel layer, larger values put more load balancing stress on the quality
of subproblems, and lower values more stress on quantity of subproblems; a value of zero
sets a processor’s workload equal to the number of subproblems it controls. The parame-
ter qualityBalance specifies additional attention to subproblem quality in load balancing,
beyond that specified in loadMeasureDegree.

5.11 Termination

absTolerance

Layer: Serial and parallel
Datatype: double

Default value: 0
Constraints Nonnegative

Absolute tolerance for optimal objective value. Subproblems are fathomed when their bounds
are within absTolerance of the incumbent value. The final solution reported should be
within this distance of the true optimum. This parameter is used to set the branching

class member absTol. However, applications may adjust the value of absTol. For example,
in a linear pure integer program with all objective function coefficients integer, you may
want to set absTol to at least 1. In this situation, you could alternatively design your
branching-derived class to round up the value of branchSub::bound to the next integer.
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relTolerance

Layer: Serial and parallel
Datatype: double

Default value: 10−7

Constraints Nonnegative

Relative tolerance for optimal objective value. If the incumbent value is z and the subproblem
bound is b, a subproblem can be fathomed if |(z − b)/z| ≤ relTolerance. This parameter
essentially controls the number of digits of precision of the final solution. A value of zero is
possible, but not recommended unless your bound calculations use only integer arithmetic,
and there is no possibility of round-off error. This parameter is used to set the data member
relTol in the branching class.

integerTolerance

Layer: Serial and parallel
Datatype: double

Default value: 10−5

Constraints Lower bound: 0, Upper bound: 1

Tolerance for determining whether numbers are integers. Note that this parameter does
not affect PEBBL itself, but only applications that use the methods isInteger(double) or
isZero(double) provided for convenience in class pebblBase, from which branching and
branchSub are both derived.

maxCPUMinutes

Layer: Serial and parallel
Datatype: double

Default value: 0
Constraints Nonnegative

maxSPBounds

Layer: Serial and parallel
Datatype: double

Default value: 0
Constraints Nonnegative

maxWallMinutes

Layer: Serial and parallel
Datatype: double

Default value: 0
Constraints Nonnegative

These parameters control PEBBL’s built-in abort function. A PEBBL run will abort if
the CPU time (per processor) exceeds maxCPUMinutes, the total number of subproblems
bounded exceeds maxSPBounds, or the total wall clock time spent in the search exceeds
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maxWallMinutes. In each case, a zero value, which is the default, means there is no limit.

printAbortMessage

Layer: Serial and parallel
Datatype: bool

Default value: true

Instructs PEBBL to print an explanatory message when aborting due to the maxCPUMinutes,
maxSPBounds, or maxWallMinutes limits.

rampUpOnly

Layer: Serial and parallel
Datatype: bool

Default value: false

Forces PEBBL runs to terminate immediately after ramp-up. This parameter is provided
primarily for debugging or evaluating the performance of your application’s ramp-up phase.

useAbort

Layer: Serial and parallel
Datatype: bool

Default value: false

If true, force an abort when an error occurs.
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